Complex earthquake rupture and local tsunamis
نویسنده
چکیده
[1] In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occurring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. Awide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.
منابع مشابه
Local Tsunamis and Earthquake Source Parameters
A persistent problem in estimating the severity of local tsunamis generated by earthquakes is explaining the great event-to-event variability of tsunami run-up heights relative to the magnitude of the earthquake. Undoubtedly, there is always variability in run-up that is dependent on local bathymetry. However, many earthquakes in recent years have produced unexpectedly high local run-up heights...
متن کاملA great earthquake rupture across a rapidly evolving three-plate boundary.
On 1 April 2007 a great, tsunamigenic earthquake (moment magnitude 8.1) ruptured the Solomon Islands subduction zone at the triple junction where the Australia and Solomon Sea-Woodlark Basin plates simultaneously underthrust the Pacific plate with different slip directions. The associated abrupt change in slip direction during the great earthquake drove convergent anelastic deformation of the u...
متن کاملTwin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake
The 2011 Tohoku megathrust earthquake had an unexpected size for the region. To image the earthquake rupture in detail, we applied a novel backprojection technique to waveforms from local accelerometer networks. The earthquake began as a small-size twin rupture, slowly propagating mainly updip and triggering the break of a larger-size asperity at shallower depths, resulting in up to 50 m slip a...
متن کاملTsunami early warning using earthquake rupture duration
[1] Effective tsunami early warning for coastlines near a tsunamigenic earthquake requires notification within 5–15 minutes. We have shown recently that tsunamigenic earthquakes have an apparent rupture duration, T0, greater than about 50 s. Here we show that T0 gives more information on tsunami importance than moment magnitude, Mw, and we introduce a procedure using seismograms recorded near a...
متن کاملFault parameters of the 1896 Sanriku Tsunami Earthquake estimated from Tsunami Numerical Modeling
The June 15, 1896 Sanriku earthquake generated devastating tsunamis with the maximum run-up of 25 m and caused the worst tsunami disaster in the history of Japan, despite its moderate surface wave magnitude (Ms=7.2) and weak seismic intensity. This is a typical tsunami earthquake, which generates anomalously larger tsunamis than expected from its seismic waves. Previously proposed mechanisms of...
متن کامل